136 research outputs found

    Eigen electric moments of magnetic-dipolar modes in quasi-2D ferrite disk particles

    Full text link
    A property associated with a vortex structure becomes evident from an analysis of confinement phenomena of magnetic oscillations in a quasi-2D ferrite disk with a dominating role of magnetic-dipolar (non-exchange-interaction) spectra. The vortices are guaranteed by the chiral edge states of magnetic-dipolar modes which result in appearance of eigen electric moments oriented normally to the disk plane. Due to the eigen-electric-moment properties, a ferrite disk placed in a microwave cavity is strongly affected by the cavity RF electric field with a clear evidence for multi-resonance oscillations. For different cavity parameters, one may observe the "resonance absorption" and "resonance repulsion" behaviors

    Learning from text-based close call data

    Get PDF
    A key feature of big data is the variety of data sources that are available; which include not just numerical data but also image or video data or even free text. The GB railways collects a large volume of free text data daily from railway workers describing close call hazard reports: instances where an accident could have – but did not – occur. These close call reports contain valuable safety information which could be useful in managing safety on the railway, but which can be lost in the very large volume of data – much larger than is viable for a human analyst to read. This paper describes the application of rudimentary natural language processing (NLP) techniques to uncover safety information from close calls. The analysis has proven that basic information extraction is possible using the rudimentary techniques, but has also identified some limitations that arise using only basic techniques. Using these findings further research in this area intends to look at how the techniques that have been proven to date can be improved with the use of more advanced NLP techniques coupled with machine-learning

    PATRIOT: A phase I study to assess the tolerability, safety and biological effects of a specific ataxia telangiectasia and Rad3-related (ATR) inhibitor (AZD6738) as a single agent and in combination with palliative radiation therapy in patients with solid tumours.

    Get PDF
    PATRIOT is a phase I study of the ATR inhibitor, AZD6738, as monotherapy, and in combination with palliative radiotherapy. Here, we describe the protocol for this study, which opened in 2014 and is currently recruiting and comprises dose escalation of both drug and radiotherapy, and expansion cohorts

    Radiative Decays, Nonet Symmetry and SU(3) Breaking

    Get PDF
    We re-examine the problem of simultaneously describing in a consistent way all radiative and leptonic decays of light mesons (V -> P gamma, P -> V gamma, P -> gamma gamma, V -> e^+ e^-). For this purpose, we rely on the Hidden Local Symmetry model in both its anomalous and non--anomalous sectors. We show that the SU(3) symmetry breaking scheme proposed by Bando, Kugo and Yamawaki, supplemented with nonet symmetry breaking in the pseudoscalar sector, allows one to reach a nice agreement with all data, except for the K^{*+/-} radiative decay. An extension of this breaking pattern allows one to account for this particular decay mode too. Considered together, the whole set of radiative decays provides a pseudoscalar mixing angle theta_P ~ -11^o and a value for theta_V which is ~ 3^o from that of ideal mixing. We also show that it is impossible, in a practical sense, to disentangle the effects of nonet symmetry breaking and those of glue inside the eta', using only light meson decays.Comment: 36 pages. Published versio

    Additive Autocorrelation of Resilient Boolean Functions

    Full text link
    Abstract. In this paper, we introduce a new notion called the dual func-tion for studying Boolean functions. First, we discuss general properties of the dual function that are related to resiliency and additive autocor-relation. Second, we look at preferred functions which are Boolean func-tions with the lowest 3-valued spectrum. We prove that if a balanced preferred function has a dual function which is also preferred, then it is resilient, has high nonlinearity and optimal additive autocorrelation. We demonstrate four such constructions of optimal Boolean functions using the Kasami, Dillon-Dobbertin, Segre hyperoval and Welch-Gong Transformation functions. Third, we compute the additive autocorrela-tion of some known resilient preferred functions in the literature by using the dual function. We conclude that our construction yields highly non-linear resilient functions with better additive autocorrelation than the Maiorana-McFarland functions. We also analysed the saturated func-tions, which are resilient functions with optimized algebraic degree and nonlinearity. We show that their additive autocorrelation have high peak values, and they become linear when we fix very few bits. These potential weaknesses have to be considered before we deploy them in applications.

    A global research priority agenda to advance public health responses to fatty liver disease

    Get PDF
    Background & aims An estimated 38% of adults worldwide have non-alcoholic fatty liver disease (NAFLD). From individual impacts to widespread public health and economic consequences, the implications of this disease are profound. This study aimed to develop an aligned, prioritised fatty liver disease research agenda for the global health community. Methods Nine co-chairs drafted initial research priorities, subsequently reviewed by 40 core authors and debated during a three-day in-person meeting. Following a Delphi methodology, over two rounds, a large panel (R1 n = 344, R2 n = 288) reviewed the priorities, via Qualtrics XM, indicating agreement using a four-point Likert-scale and providing written feedback. The core group revised the draft priorities between rounds. In R2, panellists also ranked the priorities within six domains: epidemiology, models of care, treatment and care, education and awareness, patient and community perspectives, and leadership and public health policy. Results The consensus-built fatty liver disease research agenda encompasses 28 priorities. The mean percentage of ‘agree’ responses increased from 78.3 in R1 to 81.1 in R2. Five priorities received unanimous combined agreement (‘agree’ + ‘somewhat agree’); the remaining 23 priorities had >90% combined agreement. While all but one of the priorities exhibited at least a super-majority of agreement (>66.7% ‘agree’), 13 priorities had 90% combined agreement. Conclusions Adopting this multidisciplinary consensus-built research priorities agenda can deliver a step-change in addressing fatty liver disease, mitigating against its individual and societal harms and proactively altering its natural history through prevention, identification, treatment, and care. This agenda should catalyse the global health community’s efforts to advance and accelerate responses to this widespread and fast-growing public health threat. Impact and implications An estimated 38% of adults and 13% of children and adolescents worldwide have fatty liver disease, making it the most prevalent liver disease in history. Despite substantial scientific progress in the past three decades, the burden continues to grow, with an urgent need to advance understanding of how to prevent, manage, and treat the disease. Through a global consensus process, a multidisciplinary group agreed on 28 research priorities covering a broad range of themes, from disease burden, treatment, and health system responses to awareness and policy. The findings have relevance for clinical and non-clinical researchers as well as funders working on fatty liver disease and non-communicable diseases more broadly, setting out a prioritised, ranked research agenda for turning the tide on this fast-growing public health threat

    Optical absorptions and rotations in the ferrimagnetic garnets

    No full text
    The optical properties of several of the ferrimagnetic garnets have been measured. There are several maxima in the absorption below an absorption edge at about 5 200 Å. Light passing through the crystals undergoes a nonreciprocal rotation of its plane of polarization. The structure in the plot of rotation versus photon energy reflects that in the absorption curve. A magnetic circular dichroism is observed. These data allow us to study the electronic energy levels in these magnetic materials. The properties are such that domain structure can easily be seen and studied by transmitted light.Les propriétés optiques de plusieurs grenats ferrimagnétiques ont été observées. Il y a plusieurs maxima d'absorption au-dessous de la limite d'absorption qui se trouve à environ 5 200 Å. La lumière qui passe à travers le cristal subit une rotation non-réciproque de son plan de polarisation. La structure de la courbe représentant la rotation en fonction de l'énergie reflète celle de la courbe d'absorption. On observe un dichroisme magnétique circulaire. Ces résultats nous permettent d'étudier les niveaux d'énergie électroniques dans ces matériaux magnétiques. Des propriétés comme la structure des domaines peuvent être facilement vues et étudiées par la lumière transmise
    corecore